Abstract
Raman spectroscopy is a universal method designed for the analysis of a wide range of physical, chemical and biological systems or various surfaces. This technique is suitable to monitor various components of cells, tissues or microorganisms. The advantages include very fast non-contact and non-destructive analysis and no or minimal need for sample treatment. The yeasts Metschnikowia can be considered as industrially usable producers of pulcherrimin or single-cell lipids, depending on cultivation conditions and external stress. In the present study, Raman spectroscopy was used as an effective tool to identify both pulcherrimin and lipids in single yeast cells. The analysis of pulcherrimin is very demanding; so far, there is no optimal procedure to analyze or identify this pigment. Based on results, the strong dependence of pulcherrimin production on the ferric ion concentration was found with the highest yield in media containing 0.1 g/L iron. Further, production of lipids in Metschnikowia cells was studied at different temperatures and C:N ratios, using Raman spectroscopy to follow fatty acids composition, under different regimes, by monitoring the iodine number. The results of Raman spectroscopy were comparable with the fatty acid analysis obtained by gas chromatography. This study therefore supported use of Raman spectroscopy for biotechnological applications as a simple tool in the identification and analysis both the pulcherrimin and microbial lipids. This method provides a quick and relatively accurate estimation of targeted metabolites with minimal sample modification and allows to monitor metabolic changes over time of cultivation.
Funder
The Research Council of Norway
Subject
Virology,Microbiology (medical),Microbiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献