Author:
Yang Yurong,Chen Siying,Wu Xuefeng,Syed Sajid Iqbal,Syed Irfan Ullah Shah,Huang Beitong,Guan Pingting,Wang Deli
Abstract
Plant-associated endophytic microorganisms are essential to developing successful strategies for sustainable agriculture. Grazing is an effective practice of grassland utilization through regulating multitrophic relationships in natural grasslands. This study was conducted for exploring the effects of grazing on the diversities and communities of bacteria and fungi presented in rhizosphere soils, roots, stems, and leaves of Leymus chinensis (L. chinensis), based on high-throughput sequencing. Grazing increased bacterial diversity but reduced fungal diversity in plant leaves. Further analysis confirmed that the abundance of Chloroflexi, Gemmatimonadota, Nitrospirota, Sordariales, and Pezizales in plant leaves was increased by grazing. The Bray–Curtis similarities of microbial communities in the endosphere were higher under grazing plots than non-grazing plots. Moreover, the bacterial communities were significantly correlated with ions, while the nutrient and negative ions exhibited strong influence on fungal communities. We concluded that grazing-induced changes of microbial diversities and communities in different compartments of a dominant perennial grass (L. chinensis) could be attributed to the nutrient and ion distribution in host plant. The current study highlights the importance of livestock in mediating diversities and communities of endophytic microbes, and will be useful for better understanding the complexity of multitrophic interactions in a grassland ecosystem.
Subject
Virology,Microbiology (medical),Microbiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献