Rehydration before Application Improves Functional Properties of Lyophilized Lactiplantibacillus plantarum HAC03

Author:

Arellano-Ayala Karina,Lim Juhwan,Yeo SubinORCID,Bucheli Jorge Enrique VazquezORCID,Todorov Svetoslav Dimitrov,Ji Yosep,Holzapfel Wilhelm HeinrichORCID

Abstract

Preservation of probiotics by lyophilization is considered a method of choice for developing stable products. However, both direct consumption and reconstitution of dehydrated probiotic preparations before application “compromise” the survival and functional characteristics of the microorganisms under the stress of the upper gastro-intestinal tract. We evaluated the impact of different food additives on the viability, mucin adhesion, and zeta potential of a freeze-dried putative probiotic, Lactiplantibacillus (Lp.) plantarum HAC03. HAC03-compatible ingredients for the formulation of ten rehydration mixtures could be selected. Elevated efficacy was achieved by the B-active formulation, a mixture of non-protein nitrogen compounds, sugars, and salts. The survival of Lp. plantarum HAC03 increased by 36.36% compared rehydration with distilled water (4.92%) after passing simulated gastro-intestinal stress conditions. Cell viability determined by plate counting was confirmed by flow cytometry. B-active formulation also influenced Lp. plantarum HAC03 functionality by increasing its adherence to a Caco-2 cell-line and by changing the bacterial surface charge, measured as zeta potential.Hydrophobicity, mucin adhesion and immunomodulatory properties of Lp. plantarum HAC03 were not affected by the B-active formulation. The rehydration medium also effectively protected Lp. plantarum ATCC14917, Lp. plantarum 299v, Latilactobacillus sakei (Lt.) HAC11, Lacticaseibacillus (Lc.) paracasei 532, Enterococcus faecium 200, and Lc. rhamnosus BFE5263.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3