Antioxidant and Anti-Inflammatory Properties of Probiotic Candidate Strains Isolated during Fermentation of Agave (Agave angustifolia Haw)

Author:

Hernández-Delgado Natalia C.,Torres-Maravilla Edgar,Mayorga-Reyes Lino,Martín Rebeca,Langella Philippe,Pérez-Pastén-Borja RicardoORCID,Sánchez-Pardo María E.,Bermúdez-Humarán Luis G.ORCID

Abstract

Agave species are a source of diverse products for human use, such as food, fiber, and beverages, which include mezcal, a distilled beverage produced by spontaneous fermentation. Agave is an excellent source of high amounts of sugars, minerals, and phenolic compounds, which favor the growth of lactic acid bacteria (LAB) and yeast communities. In this work, 20 promising LAB strains with probiotic characteristics were isolated from the agave fermentation stage in mezcal production. The strains belonged to Lactobacillus plantarum (15), Lactobacillus rhamnosus (2), Enterococcus faecium (2), and Lactococcus lactis (1). These isolates were characterized for their resistance under gastrointestinal conditions, such as lysozyme, acid pH, and bile salts. In addition, the adherence of these LABs to human intestinal epithelial cells (Caco-2 and HT-29 cells) was tested in vitro and their antioxidant and immunomodulatory profile was determined using cellular models. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains were selected for their antioxidant properties, and their capacities in an oxidative stress model in intestinal epithelial cells IECs (Caco-2 and HT-29 cells) in the presence of hydrogen peroxide were evaluated. Interestingly, Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains showed anti-inflammatory properties in TNF-α-stimulated HT-29 cells. Subsequently, bacterial strains exhibiting antioxidant and anti-inflammatory properties were tested in vivo in a mouse model with dinitrobenzene sulfonic acid (DNBS)-induced chronic colitis. Weight loss, intestinal permeability, and cytokine profiles were measured in mice as indicators of inflammation. One of the selected strains, Lactobacillus plantarum LM17, improved the health of the mice, as observed by reduced weight loss, and significantly decreased intestinal permeability. Altogether, our results demonstrate the potential of LAB (and lactobacilli in particular) isolated from the agave fermentation stage in mezcal production. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 strains represent potential candidates for developing new probiotic supplements to treat inflammatory bowel disease (IBD).

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3