Predatory Bacteria Select for Sustained Prey Diversity

Author:

Nair Ramith R.ORCID,Velicer Gregory J.ORCID

Abstract

Predator impacts on prey diversity are often studied among higher organisms over short periods, but microbial predator-prey systems allow examination of prey-diversity dynamics over evolutionary timescales. We previously showed that Escherichia coli commonly evolved minority mucoid phenotypes in response to predation by the bacterial predator Myxococcus xanthus by one time point of a coevolution experiment now named MyxoEE-6. Here we examine mucoid frequencies across several MyxoEE-6 timepoints to discriminate between the hypotheses that mucoids were increasing to fixation, stabilizing around equilibrium frequencies, or heading to loss toward the end of MyxoEE-6. In four focal coevolved prey populations, mucoids rose rapidly early in the experiment and then fluctuated within detectable minority frequency ranges through the end of MyxoEE-6, generating frequency dynamics suggestive of negative frequency-dependent selection. However, a competition experiment between mucoid and non-mucoid clones found a predation-specific advantage of the mucoid clone that was insensitive to frequency over the examined range, leaving the mechanism that maintains minority mucoidy unresolved. The advantage of mucoidy under predation was found to be associated with reduced population size after growth (productivity) in the absence of predators, suggesting a tradeoff between productivity and resistance to predation that we hypothesize may reverse mucoid vs non-mucoid fitness ranks within each MyxoEE-6 cycle. We also found that mucoidy was associated with diverse colony phenotypes and diverse candidate mutations primarily localized in the exopolysaccharide operon yjbEFGH. Collectively, our results show that selection from predatory bacteria can generate apparently stable sympatric phenotypic polymorphisms within coevolving prey populations and also allopatric diversity across populations by selecting for diverse mutations and colony phenotypes associated with mucoidy. More broadly, our results suggest that myxobacterial predation increases long-term diversity within natural microbial communities.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3