An Overview of Bioprocesses Employing Specifically Selected Microbial Catalysts for γ-Aminobutyric Acid Production

Author:

Dahiya Divakar,Manuel Jemima V.,Nigam Poonam SinghORCID

Abstract

Gamma-aminobutyric acid (GABA) is an important chemical compound in the human brain. GABA acts as an inhibitory neurotransmitter by inducing hyperpolarization of cellular membranes. Usually, this pharmaceutically important compound is synthesized using a chemical process, but in this short overview we have only analysed microbial processes, which have been studied for the biosynthesis of this commercially important compound. The content of this article includes the following summarised information: the search for biological processes showed a number of lactic acid bacteria and certain species of fungi, which could be effectively used for the production of GABA. Strains found to possess GABA-producing pathways include Lactobacillus brevis CRL 1942, L. plantarum FNCC 260, Streptococcus salivarius subsp. thermophilus Y2, Bifidobacterium strains, Monascus spp., and Rhizopus spp. Each of these strains required specific growth conditions. However, several factors were common among these strains, such as the use of two main supplements in their fermentation medium—monosodium glutamate and pyridoxal phosphate—and maintaining an acidic pH. Optimization studies of GABA production were comprised of altering the media constituents, modifying growth conditions, types of cultivation system, and genetic manipulation. Some strains increased the production of GABA under anaerobic conditions. Genetic manipulation focused on silencing some genes or overexpression of gadB and gadC. The conclusion, based on the review of information available in published research, is that the targeted manipulation of selected microorganisms, as well as the culture conditions for an optimised bioprocess, should be adopted for an increased production of GABA to meet its increasing demand for food and pharmaceutical applications.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3