Affiliation:
1. School of Agriculture, Shenzhen Campus, Sun Yat-Sen University, Shenzhen 518107, China
Abstract
In practical applications, the effectiveness of biological control agents such as Bacillus is often unstable due to different soil environments. Herein, we aimed to explore the control effect and intrinsic mechanism of Bacillus in black soil and red soil in combination with tomato Verticillium wilt. Bacillus application effectively controlled the occurrence of Verticillium wilt in red soil, reducing the incidence by 19.83%, but played a limited role in black soil. Bacillus colonized red soil more efficiently. The Verticillium pathogen decreased by 71.13% and 76.09% after the application of Bacillus combinations in the rhizosphere and bulk of the red soil, respectively, while there was no significant difference in the black soil. Additionally, Bacillus application to red soil significantly promoted phosphorus absorption. Furthermore, it significantly altered the bacterial community in red soil and enriched genes related to pathogen antagonism and phosphorus activation, which jointly participated in soil nutrient activation and disease prevention, promoting tomato plant growth in red soil. This study revealed that the shaping of the bacterial community by native soil may be the key factor affecting the colonization and function of exogenous Bacillus.
Funder
National Natural Science Foundation of China
Shenzhen Postdoctoral Scientific Research
Natural Science Foundation of Jiangsu Province
Fundamental Research Funds for the Central Universities, Sun Yat-sen University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献