Characterization of a Novel Hyperthermophilic GH1 β-Glucosidase from Acidilobus sp. and Its Application in the Hydrolysis of Soybean Isoflavone Glycosides

Author:

He Jinjian1ORCID,Li Yuying1,Sun Xihang1ORCID,Zuo Dinghui12,Wang Mansheng1ORCID,Zheng Xia1,Yu Pinglian3,Shi Pengjun1

Affiliation:

1. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China

2. College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China

3. Key Laboratory of Yunnan University for Plateau Characteristic Functional Food, School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, China

Abstract

A putative β-glucosidase gene, BglAc, was amplified from Acidilobus sp. through metagenome database sampling from a hot spring in Yellowstone National Park. BglAc is composed of 485 amino acid residues and bioinformatics analysis showed that it belongs to the GH1 family of β-glucosidases. The gene was successfully expressed in Escherichia coli with a molecular weight of approximately 55.3 kDa. The purified recombinant enzyme showed the maximum activity using p-nitrophenyl-β-D-glucopyranoside (pNPG) as the substrate at optimal pH 5.0 and 100 °C. BglAc exhibited extraordinary thermostability, and its half-life at 90 °C was 6 h. The specific activity, Km, Vmax, and Kcat/Km of BglAc toward pNPG were 357.62 U mg−1, 3.41 mM, 474.0 μmol min−1·mg−1, and 122.7 s−1mM−1. BglAc exhibited the characteristic of glucose tolerance, and the inhibition constant Ki was 180.0 mM. Furthermore, a significant ethanol tolerance was observed, retaining 96% relative activity at 10% ethanol, and even 78% at 20% ethanol, suggesting BglAc as a promising enzyme for cellulose saccharification. BglAc also had a strong ability to convert the major soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their corresponding aglycones. Overall, BglAc was actually a new β-glucosidase with excellent thermostability, ethanol tolerance, and glycoside hydrolysis ability, indicating its wide prospects for applications in the food industry, animal feed, and lignocellulosic biomass degradation.

Funder

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund

Natural Science Foundation of Changsha Municipal

Agricultural Science and Technology Innovation Project Special Fund of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3