Functional Microorganisms Drive the Formation of Black-Odorous Waters

Author:

Wu Yuchen123,Wang Wenjing1,Liu Xiaozhu13,Sheng Yanqing12

Affiliation:

1. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

2. State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Black-odorous waters are water bodies that are noticeably abnormal in color or emit unpleasant odors. River water pollution and ecological degradation have gradually emerged with urbanization and rapid economic development, and BOW has become frequent. The black-odorous evolution of urban water bodies is a serious environmental problem in many areas, posing a serious threat to both human health and the ecological environment. Functional microorganisms are closely related to the formation of black-odorous phenomena in water bodies, but the understanding of the mechanisms by which functional microorganisms influence the formation of BOW is very limited. In this study, water samples from the Guangdang River in Yantai, Shandong Province, China, were collected as the bacterial solution in the study, and how environmental factors and functional microorganisms affect the formation of black smelly water was investigated by artificially simulating black smelly water. The results indicated that different environmental factors have different effects on the formation of BOW. Anaerobic conditions accelerated the formation of BOW, and species diversity and species abundance were lowest under this condition. Hydraulic disturbance and nitrate effectively mitigated the BOW phenomenon, in which species diversity and species abundance were higher; controlling either of these variables was effective in mitigating the BOW phenomenon. Desulfobacterota played a key role in the formation of BOW, and reducing the proportion of Desulfobacterota in the microbial community could effectively improve the water quality. Possible directions of electron transfer in the process were hypothesized. This study contributes to identifying the biological driving factors for black-odorous evolution, presents insight for preventing BOW formation, and provides a scientific basis for subsequent BOW management.

Funder

Key Project of Shandong Provincial Natural Science Foundation

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3