Driving Factors for Black-Odor-Related Microorganisms and Potential Self-Remediation Strategies

Author:

Zhang XunORCID,Ren Yufeng,Zhu Xianbin,Pan Hongzhong,Yao Huaming,Wang Jiaming,Liu Mingliang,He Minghuang

Abstract

The black-odor phenomenon has been widely reported worldwide and recognized as a global ecological risk for aquatic environments. However, driving factors for black-odor-related microorganisms and potential self-remediation strategies are still poorly understood. This study collected eight water samples (sites A–H) disturbed by different factors from the Jishan River located in Jinmen, Hubei Province, China. Black-odor-related environmental factors and functional bacterial structure were further measured based on the basic physicochemical parameters. The results indicated that different types of disturbed conditions shape the distribution of water quality and microbial community structures. Site B, which was disturbed by dams, had the worst water quality, the lowest abundance of functional microbes for Mn, Fe, and S biotransformation, and the highest abundance of functional microbes for fermentation. The natural wetlands surrounding the terminus of the river (site H) were keys to eliminating the black-odor phenomenon. Potential black-odor-forming microorganisms include Lactococcus, Veillonella, Clostridium sensu stricto, Trichococcus, Rhodoferax, Sulfurospirillum, Desulfobulbus, and Anaeromusa-Anaeroarcus. Potential black-odor-repairing microbes include Acinetobacter, Mycobacterium, and Acidovorax. pH and COD were paramount physiochemical factors contributing to blackening-odor-related microorganisms. This study deepens our understanding of driving factors for black-odor-related microorganisms and provides a theoretical basis for eradicating the black-odor phenomenon.

Funder

National Natural Science Foundation of China

Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science

Educational Commission of Hubei Province of China

Department of Ecology and Environmental of Hubei Province of China

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3