Effects of PEF on Cell and Transcriptomic of Escherichia coli

Author:

Kuang Jinyan1,Lin Ying1,Wang Li1,Yan Zikang1,Wei Jinmei1,Du Jin1,Li Zongjun12ORCID

Affiliation:

1. Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China

2. College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China

Abstract

Pulsed electric field (PEF) is an up-to-date non-thermal processing technology with a wide range of applications in the food industry. The inactivation effect of PEF on Escherichia coli was different under different conditions. The E. coli inactivated number was 1.13 ± 0.01 lg CFU/mL when PEF was treated for 60 min and treated with 0.24 kV/cm. The treatment times were found to be positively correlated with the inactivation effect of PEF, and the number of E. coli was reduced by 3.09 ± 0.01 lg CFU/mL after 100 min of treatment. The inactivation assays showed that E. coli was inactivated at electrical intensity (0.24 kV/cm) within 100 min, providing an effective inactivating outcome for Gram-negative bacteria. The purpose of this work was to investigate the cellular level (morphological destruction, intracellular macromolecule damage, intracellular enzyme inactivation) as well as the molecular level via transcriptome analysis. Field Emission Scanning Electron Microscopy (TFESEM) and Transmission Electron Microscope (TEM) results demonstrated that cell permeability was disrupted after PEF treatment. Entocytes, including proteins and DNA, were markedly reduced after PEF treatment. In addition, the activities of Pyruvate Kinase (PK), Succinate Dehydrogenase (SDH), and Adenosine Triphosphatase (ATPase) were inhibited remarkably for PEF-treated samples. Transcriptome sequencing results showed that differentially expressed genes (DEGs) related to the biosynthesis of the cell membrane, DNA replication and repair, energy metabolism, and mobility were significantly affected. In conclusion, membrane damage, energy metabolism disruption, and other pathways are important mechanisms of PEF’s inhibitory effect on E. coli.

Funder

Key Research Program of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3