Feeding Astragalus membranaceus Root Improves the Rumen Fermentation Rate in Housed Goats through the Alteration of the Rumen Community Composition

Author:

Peng Zhaoyu1,Fujino Mizuki1,Anand Mukul2,Uyeno Yutaka1ORCID

Affiliation:

1. Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto 399-4598, Japan

2. College of Veterinary Science and Animal Husbandry, DUVASU, Mathura 281001, India

Abstract

Although Astragalus membranaceus root (AMR) has been noted as an ingredient in ruminant feed, the impacts of AMR feeding on rumen fermentation and the microbial community structure within the rumen are yet to be evaluated. This study investigated the effects of AMR supplementation on rumen fermentation characteristics and microbial community structures in goats. In two sets of feeding experiments, four Japanese native goats were fed AMR (10 g/kg DM/day/head) for three weeks per experiment. The rumen fluid samples were analyzed using high-performance liquid chromatography for fermentation products and next-generation sequencing for microbial analysis. The rumen fluid samples in the second experiment were also subject to an in vitro anaerobic fermentation test. The results indicated a significant modification, with a higher volatile fatty acid (VFA) content in the rumen fluid of goats in the feeding period than before feeding (p < 0.01). The microbial analysis revealed a significant increase in community diversity (p < 0.05) following AMR feeding, and the rumen bacterial community increased in two families belonging to the order Oscillospirales in Firmicutes (p < 0.05). The phylum Verrucomicrobiota was observed to be significantly less abundant after AMR feeding than during the control period (p < 0.05). Notably, the linear discriminant analysis revealed that the families with largely unknown functions in the rumen (Oscillospiraceae, Rikenellaceae, Muribaculaceae, and vadinBB97) were the determinants of the community split between control and AMR feeding. Increased fermentation rate by AMR feeding was also supported by an in vitro culture experiment, which resulted in faster VFA production without affecting methane production in total gas production. The study demonstrated that AMR can significantly facilitate change in the bacterial community structure in the goat rumen involving a shift of the favoring fibrolytic bacteria towards VFA production. The long-term effects of AMR supplementation and its applicability across different ruminant species, with potential benefits for animal health and productivity, should be addressed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3