Abstract
Listeria monocytogenes (Lm) is a ubiquitous foodborne pathogen comprising of 14 serotypes, of which serovar 4h isolates belonging to hybrid sub-lineage Ⅱ exhibit hypervirulent features. LMxysn_1693 of serovar 4h Lm XYSN, a member of genomic island-7 (GI-7), is predicted to a membrane protein with unknown function, which is conserved in serovar 4h Listeria monocytogenes. Under bile salts stress, Lm XYSN strain lacking LMxysn_1693 (XYSN∆1693) exhibited a stationary phase growth defect as well as a reduction in biofilm formation and strikingly down-regulated bile-salts-resistant genes and virulent genes. Particularly, LMxysn_1693 protein plays a crucial role in Lm XYSN adhesion and invasion to intestinal epithelial cells, as well as colonization in the ileum of mice. Taken together, these findings indicate that the LMxysn_1693 gene encodes a component of the putative ABC transporter system, synthetically interacts with genes involved in bile resistance, biofilm formation and virulence, and thus contributes to Listeria monocytogenes survival within and outside the host.
Funder
National Natural Science Foundation of China
Jiangsu agricultural science and technology independent innovation
Subject
Virology,Microbiology (medical),Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献