Abstract
Zearalenone (ZEN) and deoxynivalenol (DON) are mycotoxins produced by various species of Fusarium fungi. They contaminate agricultural products and negatively influence human and animal health, thus representing a serious problem of the agricultural industry. Earlier we showed that compactin, a secondary metabolite of Penicillium citrinum, is able to completely suppress the aflatoxin B1 biosynthesis by Aspergillus flavus. Using the F. culmorum strain FC-19 able to produce DON and ZEN, we demonstrated that compactin also significantly suppressed both DON (99.3%) and ZEN (100%) biosynthesis. The possible mechanisms of this suppression were elucidated by qPCR-based analysis of expression levels of 48 biosynthetic and regulatory genes. Expression of eight of 13 TRI genes, including TRI4, TRI5, and TRI101, was completely suppressed. A significant down-regulation was revealed for the TRI10, TRI9, and TRI14 genes. TRI15 was the only up-regulated gene from the TRI cluster. In the case of the ZEN cluster, almost complete suppression was observed for PKS4, PKS13, and ZEB1 genes, and the balance between two ZEB2 isoforms was altered. Among regulatory genes, an increased expression of GPA1 and GPA2 genes encoding α- and β-subunits of a G-protein was shown, whereas eight genes were down-regulated. The obtained results suggest that the main pathway for a compactin-related inhibition of the DON and ZEN biosynthesis affects the transcription of genes involved in the G-protein-cAMP-PKA signaling pathway. The revealed gene expression data may provide a better understanding of genetic mechanisms underlying mycotoxin production and its regulation.
Funder
Russian Science Foundation
Subject
Virology,Microbiology (medical),Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献