Legacy Effects of Biochar and Compost Addition on Arbuscular Mycorrhizal Fungal Community and Co-Occurrence Network in Black Soil

Author:

Xin Ying,Fan Yi,Babalola Olubukola OlurantiORCID,Zhang Ximei,Yang Wei

Abstract

Compost and biochar are beneficial soil amendments which derived from agricultural waste, and their application was proven to be effective practices for promoting soil fertility. Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species, and are recognized as one group of the most important soil microorganisms to increase food security in sustainable agriculture. To understand the legacy effects of compost and biochar addition on AM fungal communities, a field study was conducted on the Songnen Plain, Northeast China. Two years after application, compost addition improved soil aggregate stability, but we did not detect a legacy effect of compost addition on AM fungal community. Our results indicated that AM fungal Shannon diversity and Pielou evenness indices were significantly increased by one-time biochar addition, but unaffected by compost addition after two year’s application. PERMANOVA analysis also revealed a legacy effect of biochar addition on AM fungal community. Network analysis revealed a dramatically simplified AM fungal co-occurrence network and small network size in biochar added soils, demonstrated by their topological properties (e.g., low connectedness and betweenness). However, AM fungal community did not differ among aggregate fractions, as confirmed by the PERMANOVA analysis as well as the fact that only a small number of AM fungal OTUs were shared among aggregate fractions. Consequently, the current study highlights a stronger legacy effect of biochar than compost addition on AM fungi, and have implications for agricultural practices.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3