Unlocking the plant growth-promoting potential of yeast spp.: exploring species from the Moroccan extremophilic environment for enhanced plant growth and sustainable farming

Author:

Raklami Anas1ORCID,Babalola Olubukola Oluranti2ORCID,Jemo Martin1,Nafis Ahmed3ORCID

Affiliation:

1. AgroBiosciences Program, College of Sustainable Agriculture and Environmental Sciences (CAES), Mohammed VI Polytechnic University (UM6P) , Lot 660, Hay Moulay Rachid, Benguerir 43150 , Morocco

2. Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University , Private Bag X2046, Mmabatho 2735 , South Africa

3. Microbiology and Antimicrobial Agents Team, Laboratory of Plant Biotechnology, Ecology and Valorization of Ecosystems (LB2VE/URL-CNRST n°10), Faculty of Sciences, Chouaïb Doukkali University , El Jadida 24000 , Morocco

Abstract

Abstract In this study, we successfully isolated two distinct yeasts from Moroccan extreme environments. These yeasts were subjected to molecular characterization by analyzing their Internal Transcribed spacer (ITS) regions. Our research thoroughly characterizes plant growth-promoting abilities and their drought and salt stress tolerance. In a greenhouse assay, we examined the impact of selected yeasts on Medicago sativa’s growth. Four treatments were employed: (i) control without inoculation (NI), (ii) inoculation with L1, (iii) inoculation with L2, and (iv) inoculation with the mixture L1 + L2. L1 isolated from Toubkal Mountain shared 99.83% sequence similarity to Rhodotorula mucilaginosa. Meanwhile, L2, thriving in the arid Merzouga desert, displayed a similar identity to Naganishia albida (99.84%). Yeast strains were tolerant to NaCl (2 M) and 60% PEG (polyethylene glycol P6000) in case of drought. Both strains could solubilize phsphorus, with L2 additionally demonstrating potassium solubilization. In addition, both strains produce indole acetic acid (up to 135 µl ml−1), have siderophore ability, and produce aminocyclopropane-1-carboxylic acid deaminase. Isolates L1 and L2, and their consortium showed that the single or combined strain inoculation of M. sativa improved plant growth, development, and nutrient assimilation. These findings pave the way for harnessing yeast-based solutions in agricultural practices, contributing to enhanced crop productivity and environmental sustainability.

Funder

CNRST

TUBITAK

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3