The Application of Mixed Organic and Inorganic Fertilizers Drives Soil Nutrient and Bacterial Community Changes in Teak Plantations

Author:

Zhang Qingqing,Zhao Weiwei,Zhou Zaizhi,Huang Guihua,Wang Xianbang,Han Qiang,Liu Gaofeng

Abstract

Appropriate fertilization can enhance forest productivity by maintaining soil fertility and improving the structure of the bacterial community. However, there is still uncertainty surrounding the effects of combined application of organic and inorganic fertilizers on soil nutrient status and bacterial community structure. A fertilization experiment was set up in an eight-year-old teak plantation with five treatments involved: mixed organic and NPK compound fertilizers (OCF), mixed organic and phosphorus fertilizers (OPF), mixed organic, NPK and phosphorus fertilizers (OCPF), mixed NPK and phosphorus fertilizers (CPF) and no fertilization (CK). Soil chemical properties and bacterial communities were investigated, and the co-occurrence pattern of the bacterial community under different fertilization treatments was compared. The results showed that the contents of soil organic matter and nitrate nitrogen, and the soil pH values were the highest after OCPF treatment, which were 20.39%, 90.91% and 8.16% higher than CK, respectively. The richness and diversity of bacteria underwent no obvious changes, but the structure of the soil’s bacterial community was significantly altered by fertilization. Of the dominant bacteria taxa, the relative abundance increased for Gemmatimonadetes, Myxococcota, ADurb.Bin063-13 and Candidatus_Koribacter, and decreased for Chloroflexi, Proteobacteria, JG30-KF-AS9 and Acidothermus under OCPF treatment in comparison to CK. The number of nodes and edges, the average degree and the network density of bacterial community co-occurrence networks were the greatest in OCPF treatment, indicating that application of OCPF could make the network structure of soil bacteria more stable and complex. Moreover, soil pH and organic matter were significantly correlated with bacterial community structure and were considered the main influencing factors. These findings highlight that the combined application of organic, NPK and phosphorus fertilizers is highly beneficial for improving soil quality and optimizing bacterial community structure in teak plantations.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3