Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation

Author:

de Oliveira Junqueira Ana Caroline1ORCID,Moreira Melo Nadielle Tamires2,Skorupa Parachin Nádia3,Costa Paes Hugo4ORCID

Affiliation:

1. Department of Molecular Biology, University of Brasília, Brasília 70790-900, Brazil

2. Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, Brazil

3. Gingko Bioworks, 27 Drydock Avenue, 8th floor, Boston, MA 02210-2377, USA

4. Clinical Medicine Division, University of Brasília Medical School, University of Brasília, Brasília 70910-900, Brazil

Abstract

Cytosolic pyruvate is an essential metabolite in lactic acid production during microbial fermentation. However, under aerobiosis, pyruvate is transported to the mitochondrial matrix by the mitochondrial pyruvate carrier (MPC) and oxidized in cell respiration. Previous reports using Saccharomyces cerevisiae or Aspergillus oryzae have shown that the production of pyruvate-derived chemicals is improved by deleting the MPC1 gene. A previous lactate-producing K. phaffii strain engineered by our group was used as a host for the deletion of the MPC1 gene. In addition, the expression of a bacterial hemoglobin gene under the alcohol dehydrogenase 2 promoter from Scheffersomyces stipitis, known to work as a hypoxia sensor, was used to evaluate whether aeration would supply enough oxygen to meet the metabolic needs during lactic acid production. However, unlike S. cerevisiae and A. oryzae, the deletion of Mpc1 had no significant impact on lactic acid production but negatively affected cell growth in K. phaffii strains. Furthermore, the relative quantification of the VHb gene revealed that the expression of hemoglobin was detected even in aerobic cultivation, which indicates that the demand for oxygen in the bioreactor could result in functional hypoxia. Overall, the results add to our previously published ones and show that blocking cell respiration using hypoxia is more suitable than deleting Mpc for producing lactic acid in K. phaffii.

Funder

Fundação de Apoio a Pesquisa do Distrito Federal

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3