Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections

Author:

Balázs Viktória L.1ORCID,Nagy-Radványi Lilla1,Bencsik-Kerekes Erika2,Koloh Regina1,Szabó Dina2,Kocsis Béla3,Kocsis Marianna4ORCID,Farkas Ágnes1ORCID

Affiliation:

1. Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary

2. Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary

3. Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary

4. Department of Plant Biology, Institute of Biology, University of Pécs, 7624 Pécs, Hungary

Abstract

Honey is known as an alternative remedy for the treatment of wounds. To evaluate the potential of five Hungarian honey types against wound-associated bacteria, in vitro microbiological assays were conducted on Pseudomonas aeruginosa, Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus (MRSA). Minimum inhibitory concentration (MIC) was determined with the broth macrodilution method, and biofilm degradation capacity was tested with a crystal violet assay. To understand the underlying mechanisms, the effects of honey treatments were assessed on bacterial membrane integrity and quorum sensing (QS). The highest antibacterial activity, indicated by the lowest MIC values, as well as the highest biofilm inhibition rates and membrane disruption, was displayed by chestnut and linden honeys. The most sensitive bacterium was S. epidermidis. Bacterial membrane degradation took place 40 min after treatment with honey solutions of at least a 40% concentration. Each honey sample exhibited anti-QS activity, which was most pronounced in the case of chestnut honey. It was concluded that the antibacterial, biofilm-inhibiting and anti-QS activities of linden and chestnut honeys were superior to those of acacia, goldenrod and milkweed honeys. In addition to the floral source, the antibacterial effect of honey is influenced by the microbial species treated. The use of honey in wound treatment can be justified by its diverse antibacterial mechanisms.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3