Deciphering the Association between Campylobacter Colonization and Microbiota Composition in the Intestine of Commercial Broilers

Author:

Pang Jinji1,Looft Torey12ORCID,Zhang Qijing1,Sahin Orhan3ORCID

Affiliation:

1. Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA

2. National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA

3. Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA

Abstract

Campylobacter is a major food safety concern and is transmitted mainly via poultry meat. We previously found that some commercial broiler farms consistently produced Campylobacter-negative flocks while others were consistently Campylobacter-positive for consecutive production cycles although the farms operated under similar management practices. We hypothesized that this difference in Campylobacter colonization might be associated with the gut microbiota composition. To address this, six commercial broiler farms were selected based on their Campylobacter status (three negative and three positive) to evaluate the microbiota differences between each farm category. For each farm on each production cycle (2–3 cycles), 40 ceca collected from five-week-old broilers were processed for microbiota analysis via 16S rRNA gene sequencing. Cecal microbiota species richness, phylogenetic diversity, community structure, and composition of Campylobacter-positive farms were noticeably different from those of Campylobacter-negative farms. Rikenella, Methanocorpusculum, Barnesiella, Parasutterella, and Helicobacter were significantly more abundant among Campylobacter-positive farms. In contrast, Ruminococcaceae, Streptococcus, Escherichia, Eggerthellaceae, Lactobacillus, Monoglobus, and Blausia were more abundant in Campylobacter-negative farms. Eggerthellaceae, Clostridia, Lachnospiraceae, Lactobacillus, Monoglobus, and Parabacteroides were significantly negatively correlated with Campylobacter abundance. These findings suggest that specific members of cecal microbiota may influence Campylobacter colonization in commercial broilers and may be further explored to control Campylobacter in poultry.

Funder

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3