Microemulsion of Cinnamon Essential Oil Formulated with Tea Polyphenols, Gallic Acid, and Tween 80: Antimicrobial Properties, Stability and Mechanism of Action

Author:

Wang Wei,Chen Yin-Feng,Wei Ze-Feng,Jiang Jing-Jing,Peng Jia-Qian,He Qi-Tong,Xu Wen-Ying,Liu Hui-MinORCID

Abstract

The objective of this article was to combine tea polyphenols, gallic acid, and cinnamon essential oil to construct a natural extract-complex microemulsion system (NMs) with good antibacterial activity, antioxidant activity, and stability, as well as low irritation. NMs were characterized by particle size distribution, electrical conductivity, and light transmittance. The stability, as well as the antimicrobial, antioxidant, irritation, and antimicrobial mechanisms, of NMs were also studied. The results showed that NMs had a significant antimicrobial function against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus brasiliensis. The minimum inhibitory concentrations were 156 μg/mL, 62.5 μg/mL, 125 μg/mL, 250 μg/mL, and 125 μg/mL, respectively. Through the cell membrane permeability test and growth curve test of bacteria and fungi, we concluded that the NMs’ mechanism of action on bacteria and fungi could be interpreted as NMs mainly altering the permeability of cell membranes to inhibit the growth of bacteria and fungi. The results of this study have important implications for utilizing plant extracts as natural preservatives for food and cosmetics.

Funder

Shanghai Alliance Program

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3