Tea polyphenols-enhanced in-situ polarization of polyvinylidene fluoride nanofiber material with antibacterial and high-filtration, low-resistance filtering performances

Author:

Jia Qi1,Diao Xinyi1,Li Kun1,Han Ling1ORCID

Affiliation:

1. School of Textile Science and Engineering, Xi’an Polytechnic University, China

Abstract

To address the issue of viral and bacterial contamination in air filtration materials, specifically focusing on the accumulation of viruses on aerogels and long-term bacterial growth, a hydrophobic and antimicrobial polyvinylidene fluoride (PVDF)/tea polyphenols (TPs) nanofibers membrane was prepared by electrospinning technique with natural antimicrobial TPs and ferroelectric PVDF as raw materials. By scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and testing on contact angle and antimicrobial properties, the performances of the nanofiber membranes were characterized. It was verified by XRD and FTIR analyses that the TPs facilitated the transition of PVDF from α-crystalline phase to the β-crystalline phase, thereby enhancing the polarization effect of PVDF nanofiber membranes and fortifying the electrostatic adsorption filtration capacity of the material’s trapped charges. Therefore, the incorporation of TPs not only bolstered the material’s antimicrobial efficacy but also reinforced the in-situ polarized electret effect of PVDF, consequently augmenting the high filtration efficiency and low filtration resistance capabilities of the PVDF/TPs membrane. The research found that filter membranes containing TPs exhibit exceptional filtration performance, effectively maintaining filtration resistance in 20–25 Pa while achieving a filtration efficiency of over 90% for aerosols with diameters of 2.5 μm. Notably, the PVDF/TPs membrane containing 20% TPs demonstrated outstanding filtration efficiency against 1.5 μm aerosol particles, reaching 99.98% with a filtration resistance of only 23.26 Pa, and a high inhibition rate against Staphylococcus aureus of 96.5%. The PVDF/TPs nanofiber air filtration material developed in this study presents a novel approach for high-efficiency, low-resistance, antibacterial filtration for diverse applications in antibacterial air filtration fields.

Funder

the Science and Technology Planning Project of Beilin District in Xi'an City of Shaanxi Province

Shaanxi Province Key Research Program Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3