Identification of Fusarium oxysporum f. sp. lactucae Race 1 as the Causal Agent of Lettuce Fusarium Wilt in Greece, Commercial Cultivars’ Susceptibility, and Temporal Expression of Defense-Related Genes

Author:

Tziros George T.1ORCID,Karaoglanidis George S.1ORCID

Affiliation:

1. Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece

Abstract

Fusarium wilt of lettuce is found throughout the world, causing significant yield losses. Lettuce is the most-cultivated leafy vegetable in Greece, affected by a large number of foliar and soil-borne pathogens. In this study, 84 isolates of Fusarium oxysporum, obtained from soil-grown lettuce plants exhibiting wilt symptoms, were characterized as belonging to race 1 of F. oxysporum f. sp. lactucae based on sequence analysis of the translation elongation factor 1-alpha (TEF1-α) gene and the rDNA intergenic spacer (rDNA-IGS) region. The isolates were also assigned to one single race through PCR assays with specific primers targeting race 1 and race 4 of the pathogen. In addition, four representative isolates were confirmed to be associated with race 1 based on the pathogenicity tests with a set of differential lettuce cultivars. Artificial inoculations on the most commonly cultivated lettuce cultivars in Greece revealed that the tested cultivars varied regarding their susceptibility to F. oxysporum f. sp. lactucae race 1. Cultivars (cvs.) “Cencibel” and “Lugano” were found to be highly susceptible, while cvs. “Sandalina” and “Starfighter” were the most resistant ones. Expression analysis of 10 defense-related genes (PRB1, HPL1, LTC1, SOD, ERF1, PAL1, LOX, MPK, BG, and GST) was carried out on artificially inoculated lettuce plants of the four above cultivars at different time points after inoculation. In resistant cultivars, a higher induction rate was observed for all the tested genes in comparison with the susceptible ones. Moreover, in resistant cultivars, all genes except LTC1, MPK, and GST showed their highest induction levels in their earliest stages of infection. The results of this study are expected to contribute to the implementation of an integrated management program to control Fusarium wilt of lettuce, based mainly on the use of resistant cultivars.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference69 articles.

1. On Fusarium oxysporum f. sp. lactucae n. f. causing root rot of lettuce;Matuo;Trans. Mycol. Soc. Japan,1967

2. Farr, D.F., and Rossman, A.Y. (2023, February 22). Fungal Databases, U.S. National Fungus Collections, ARS, USDA, Available online: https://nt.ars-grin.gov/fungaldatabases/.

3. Ready-to-eat salad crops: A plant pathogen’s heaven;Gullino;Plant Dis.,2019

4. First report of Fusarium oxysporum on lettuce in Europe;Garibaldi;Plant Dis.,2002

5. Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotranposon sequence-characterized amplified region technique;Pasquali;Phytopathology,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3