Detection of Fusarium oxysporum f.sp. lactucae race 1 and 4 via race-specific real-time PCR and target enrichment

Author:

Mestdagh Hanna,Van Poucke Kris,Haegeman Annelies,Dockx Tinne,Vandevelde Isabel,Dendauw Ellen,Decombel An,Höfte Monica,Heungens Kurt

Abstract

Fusarium oxysporum f.sp. lactucae (Fol) causes a vascular disease in lettuce that results in significant yield losses. Race-specific and sensitive real-time PCR assays were developed for Fol races 1 and 4, which are prevalent in Europe. Using genotyping-by-sequencing, unique DNA loci specific to each race were identified and subsequently used for the design of primers and hydrolysis probes. Two assays per race were developed to ensure specificity. The two assays of each race could be run in duplex format, while still giving a sensitivity of 100 fg genomic DNA for all assays. Sample preparation methods were developed for plant tissue, soil, and surfaces, with an extra enrichment step when additional sensitivity was required. By controlling the incubation conditions during the enrichment step, the real-time PCR signal could be matched to the number of spore equivalents in the original sample. When enriching naturally infested soil, down to six conidiospore equivalents L-1 soil could be detected. As enrichment ensures sensitive detection and focuses on living Fol propagules, it facilitates the evaluation of control measures. The developed detection methods for soil and surfaces were applied to samples from commercial lettuce farms and confirmed the prevalence of Fol race 4 in Belgium. Monitoring of soil disinfestation events revealed that despite a dramatic decrease in quantity, the pathogen could still be detected either immediately after sheet steaming or after harvesting the first new crop. The detection method for plant tissue was successfully used to quantify Fol in lettuce inoculated with race 1, race 4 or a combination of both. Under the temperature conditions used, race 4 was more aggressive than race 1, as reflected in larger amounts of DNA of race 4 detected in the roots. These newly developed assays are a promising tool for epidemiological research as well as for the evaluation of control measures.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3