Decoding the Microbiome’s Influence on Rheumatoid Arthritis

Author:

Coradduzza Donatella1,Bo Marco1ORCID,Congiargiu Antonella1ORCID,Azara Emanuela2,De Miglio Maria3ORCID,Erre Gian Luca3ORCID,Carru Ciriaco14ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy

2. Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy

3. Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy

4. Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy

Abstract

The aim is better to understand and critically explore and present the available data from observational studies on the pathogenetic role of the microbiome in the development of rheumatoid arthritis (RA). The electronic databases PubMed, Scopus, and Web of Science were screened for the relevant literature published in the last ten years. The primary outcomes investigated included the influence of the gut microbiome on the pathogenesis and development of rheumatoid arthritis, exploring the changes in microbiota diversity and relative abundance of microbial taxa in individuals with RA and healthy controls (HCs). The risk of bias in the included literature was assessed using the GRADE criteria. Ten observational studies were identified and included in the qualitative assessment. A total of 647 individuals with RA were represented in the literature, in addition to 16 individuals with psoriatic arthritis (PsA) and 247 HCs. The biospecimens comprised fecal samples across all the included literature, with 16S rDNA sequencing representing the primary method of biological analyses. Significant differences were observed in the RA microbiome compared to that of HCs: a decrease in Faecalibacterium, Fusicatenibacter, Enterococcus, and Megamonas and increases in Eggerthellales, Collinsella, Prevotella copri, Klebsiella, Escherichia, Eisenbergiella, and Flavobacterium. There are significant alterations in the microbiome of individuals with RA compared to HCs. This includes an increase in Prevotella copri and Lactobacillus and reductions in Collinsella. Collectively, these alterations are proposed to induce inflammatory responses and degrade the integrity of the intestinal barrier; however, further studies are needed to confirm this relationship.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3