Machine Learning of the Whole Genome Sequence of Mycobacterium tuberculosis: A Scoping PRISMA-Based Review

Author:

Perea-Jacobo Ricardo12ORCID,Paredes-Gutiérrez Guillermo René1ORCID,Guerrero-Chevannier Miguel Ángel1,Flores Dora-Luz1ORCID,Muñiz-Salazar Raquel2ORCID

Affiliation:

1. Facultad de Ingeniería Arquitectura y Diseño, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22860, Mexico

2. Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Campus Ensenada, Ensenada 22890, Mexico

Abstract

Tuberculosis (TB) remains one of the most significant global health problems, posing a significant challenge to public health systems worldwide. However, diagnosing drug-resistant tuberculosis (DR-TB) has become increasingly challenging due to the rising number of multidrug-resistant (MDR-TB) cases, despite the development of new TB diagnostic tools. Even the World Health Organization-recommended methods such as Xpert MTB/XDR or Truenat are unable to detect all the Mycobacterium tuberculosis genome mutations associated with drug resistance. While Whole Genome Sequencing offers a more precise DR profile, the lack of user-friendly bioinformatics analysis applications hinders its widespread use. This review focuses on exploring various artificial intelligence models for predicting DR-TB profiles, analyzing relevant English-language articles using the PRISMA methodology through the Covidence platform. Our findings indicate that an Artificial Neural Network is the most commonly employed method, with non-statistical dimensionality reduction techniques preferred over traditional statistical approaches such as Principal Component Analysis or t-distributed Stochastic Neighbor Embedding.

Funder

Ph.D. scholarship

M.Sc. scholarship

CONACyT

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3