Chemically Mediated Interactions with Macroalgae Negatively Affect Coral Health but Induce Limited Changes in Coral Microbiomes

Author:

Fong Jenny1ORCID,Tang Peggy P. Y.2ORCID,Deignan Lindsey K.2,Seah Jovena C. L.1ORCID,McDougald Diane23,Rice Scott A.2,Todd Peter A.1

Affiliation:

1. Experimental Marine Ecology Laboratory, National University of Singapore, Singapore 117558, Singapore

2. Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore

3. Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

Allelopathic chemicals facilitated by the direct contact of macroalgae with corals are potentially an important mechanism mediating coral–macroalgal interactions, but only a few studies have explored their impacts on coral health and microbiomes and the coral’s ability to recover. We conducted a field experiment on an equatorial urbanized reef to assess the allelopathic effects of four macroalgal species (Bryopsis sp., Endosiphonia horrida, Hypnea pannosa and Lobophora challengeriae) on the health and microbiomes of three coral species (Merulina ampliata, Montipora stellata and Pocillopora acuta). Following 24 h of exposure, crude extracts of all four macroalgal species caused significant coral tissue bleaching and reduction in effective quantum yield. The corals were able to recover within 72 h of the removal of extracts, except those that were exposed to L. challengeriae. While some macroalgal extracts caused an increase in the alpha diversity of coral microbiomes, there were no significant differences in the composition and variability of coral microbiomes between controls and macroalgal extracts at each sampling time point. Nevertheless, DESeq2 differential abundance analyses showed species-specific responses of coral microbiomes. Overall, our findings provide insights on the limited effect of chemically mediated interactions with macroalgae on coral microbiomes and the capacity of corals to recover quickly from the macroalgal chemicals.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3