Whole-Genome Analysis of Termite-Derived Bacillus velezensis BV-10 and Its Application in King Grass Silage

Author:

Zhang Xingbo1,He Xiaotao1,Chen Jieru1,Li Jingtao1,Wu Yuhui1,Chen Yu1,Yang Yuhui1

Affiliation:

1. College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

Abstract

Bacillus velezensis (B. velezensis) is a cellulose-degrading strain that has the potential as an additive in fermented feed. B. velezensis BV-10 was isolated and screened from the termite gut. We sequenced the whole genome of this new source of B. velezensis to reveal its potential for use in cellulose degradation. Whole-genome sequencing of B. velezensis BV-10 showed that it has a circular chromosome of 3929792 bp containing 3873 coding genes with a GC content of 45.51% and many genes related to cellulose, hemicellulose, and lignin degradation. King grass silage was inoculated with B. velezensis BV-10 and mixed with other feed additives to assess the effect of B. velezensis BV-10 on the fermentation quality of silage. Six treatment groups were established: the control, B. velezensis BV-10, molasses, cellulase, B. velezensis BV-10 plus molasses, and B. velezensis BV-10 plus cellulase groups. After 30 days of silage-fermentation testing, B. velezensis BV-10 was found to rapidly reduce the silage pH value and significantly reduce the acid-detergent fiber (ADF) content (p < 0.05). The addition of B. velezensis BV-10 plus molasses and cellulase in fermented feed significantly reduced the silage neutral-detergent fiber and ADF content and promoted organic-acid accumulation (p < 0.05). The above results demonstrate that B. velezensis BV-10 promotes the fermentation quality of silage and that this effect is greater when other silage-fermentation additives are included. In conclusion, genes involved in cellulose degradation in B. velezensis BV-10 were identified by whole-genome sequencing and further experiments explored the effects of B. velezensis BV-10 and different feed additives on the fermentation quality of king grass silage, revealing the potential of Bacillus velezensis as a new silage additive.

Funder

The National Natural Science Foundation of China

High-level talent program of Natural Science Foundation of Hainan province

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3