Effects of Different Nanoparticles on Microbes

Author:

Niu Bin12,Zhang Gengxin1

Affiliation:

1. State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100101, China

Abstract

Nanoparticles widely exist in nature and may be formed through inorganic or organic pathways, exhibiting unique physical and chemical properties different from those of bulk materials. However, little is known about the potential consequences of nanomaterials on microbes in natural environments. Herein, we investigated the interactions between microbes and nanoparticles by performing experiments on the inhibition effects of gold, ludox and laponite nanoparticles on Escherichia coli in liquid Luria–Bertani (LB) medium at different nanoparticle concentrations. These nanoparticles were shown to be effective bactericides. Scanning electron microscopy (SEM) images revealed the distinct aggregation of cells and nanoparticles. Transmission electron microscopy (TEM) images showed considerable cell membrane disruption due to nanoparticle accumulation on the cell surfaces, resulting in cell death. We hypothesized that this nanoparticle accumulation on the cell surfaces not only disrupted the cell membranes but also physically blocked the microbes from accessing nutrients. An iron-reducing bacterium, Shewanella putrefaciens, was tested for its ability to reduce the Fe (III) in solid ferrihydrite (HFO) or aqueous ferric citrate in the presence of laponite nanoparticles. It was found that the laponite nanoparticles inhibited the reduction of the Fe (III) in solid ferrihydrite. Moreover, direct contact between the cells and solid Fe (III) coated with the laponite nanoparticles was physically blocked, as confirmed by SEM images and particle size measurements. However, the laponite particles had an insignificant effect on the extent of aqueous Fe (III) bioreduction but slightly enhanced the rate of bioreduction of the Fe (III) in aqueous ferric citrate. The slightly increased rate of bioreduction by laponite nanoparticles may be due to the removal of inhibitory Fe (II) from the cell surface by its sorption onto the laponite nanoparticle surface. This result indicates that the scavenging of toxic heavy metals, such as Fe (II), by nanoparticles may be beneficial for microbes in the environment. On the other hand, microbial cells are also capable of detoxifying nanoparticles by coagulating nanoparticles with extracellular polymeric substances or by changing nanoparticle morphologies. Hence, the interactions between microbes and nanoparticles in natural environments should receive more attention.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3