Engineering Escherichia coli for Isobutanol Production from Xylose or Glucose–Xylose Mixture

Author:

Gu Pengfei1ORCID,Li Fangfang2,Huang Zhaosong1

Affiliation:

1. School of Biological Science and Technology, University of Jinan, Jinan 250022, China

2. Yantai Food and Drug Control and Test Center, Yantai 264003, China

Abstract

Aiming to overcome the depletion of fossil fuels and serious environmental pollution, biofuels such as isobutanol have garnered increased attention. Among different synthesis methods, the microbial fermentation of isobutanol from raw substrate is a promising strategy due to its low cost and environmentally friendly and optically pure products. As an important component of lignocellulosics and the second most common sugar in nature, xylose has become a promising renewable resource for microbial production. However, bottlenecks in xylose utilization limit its wide application as substrates. In this work, an isobutanol synthetic pathway from xylose was first constructed in E. coli MG1655 through the combination of the Ehrlich and Dahms pathways. The engineering of xylose transport and electron transport chain complexes further improved xylose assimilation and isobutanol production. By optimizing xylose supplement concentration, the recombinant E. coli strain BWL4 could produce 485.35 mg/L isobutanol from 20 g/L of xylose. To our knowledge, this is the first report related to isobutanol production using xylose as a sole carbon source in E. coli. Additionally, a glucose–xylose mixture was utilized as the carbon source. The Entner–Doudorof pathway was used to assimilate glucose, and the Ehrlich pathway was applied for isobutanol production. After carefully engineering the recombinant E. coli, strain BWL9 could produce 528.72 mg/L isobutanol from a mixture of 20 g/L glucose and 10 g/L xylose. The engineering strategies applied in this work provide a useful reference for the microbial production of isobutanol from xylose or glucose–xylose mixture.

Funder

National Natural Science Foundation of China

Key R&D Program of Shandong Province, China

Rizhao Science and Technology Innovation Project

Science and Technology Program of the University of Jinan

Higher Educational Science and Technology Program of Jinan City

Dongying Major Science and Technology Innovation Project

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3