Genetic- and Fiber-Diet-Mediated Changes in Antibiotic Resistance Genes in Pig Colon Contents and Feces and Their Driving Factors

Author:

Wang Tao12,Luo Yuheng12,Kong Xiangfeng3ORCID,Yu Bing12ORCID,Zheng Ping12,Huang Zhiqing12ORCID,Mao Xiangbing12ORCID,Yu Jie12,Luo Junqiu12,Yan Hui12ORCID,He Jun12ORCID

Affiliation:

1. Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China

2. Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China

3. Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

Abstract

Comprehensive studies on the effects of genetics and fiber diets on antibiotic resistance genes (ARGs) remain scarce. In this study, we analyzed the profiles of ARGs in colonic contents and fecal samples of Taoyuan, Duroc, and Xiangcun pigs (n = 10) fed at different fiber levels. Through macrogenomic analysis, we identified a total of 850 unique types of ARGs and classified them into 111 drug resistance classes. The abundance of partially drug-resistant ARGs was higher in the colonic contents of local pig breeds under a large-scale farming model. ARGs were found to be widely distributed among a variety of bacteria, predominantly in the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Fiber diets reduce the abundance of ARGs in colonic contents and feces, and mobile genetic elements (MGEs) and short-chain fatty acids (SCFAs) are important drivers in mediating the effect of fiber diets on the abundance of ARGs. In vitro fermentation experiments confirmed that butyric acid significantly reduced the abundance of ARGs. In summary, the results of this study enhanced our understanding of the distribution and composition of ARGs in the colon of different breeds of pigs and revealed that a fiber diet can reduce ARGs in feces through its Butyric acid, providing reference data for environmental safety.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Sichuan Province

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3