Novel and Simple Method for Quantification of 2,4,6-Trichlorophenol with Microbial Conversion to 2,4,6-Trichloroanisole

Author:

Goto Saki1,Urase Taro1ORCID,Nakakura Kaito1

Affiliation:

1. School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan

Abstract

Contamination with 2,4,6-trichloroanisole (TCA) often causes taste and odor (T&O) problems in drinking water due to its low odor threshold concentration. Microbial O-methylation of the precursor 2,4,6-trichlorophenol (TCP) would be the dominant mechanism for TCA formation. Simple and rapid measurement of TCP in the low concentration range is necessary to control the problems induced by TCA. In this study, the combination of microbial conversion and instrumental analysis was proposed as a method of TCP quantification. Fungi and bacteria were isolated from various water samples and examined for their ability to produce TCA from TCP. As a result, a strain exhibiting quantitative TCA production and a high growth rate was obtained and named Mycolicibacterium sp. CB14. The conversion rate of TCP to TCA by this strain was found to be high and stable (85.9 ± 5.3%), regardless of the applied TCP concentration, although within the range of 0.1–10 µg/L. The limits of detection and quantification for TCP by this proposed method were determined to be 5.2 ng/L and 17.3 ng/L, respectively. By improving the methods, Mycolicibacterium sp. CB14 could be used for the quantification of TCP at very low concentration levels, which is sufficient to manage the T&O problem caused by TCA.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3