Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum

Author:

Walter TatjanaORCID,Al Medani Nour,Burgardt Arthur,Cankar Katarina,Ferrer LennyORCID,Kerbs Anastasia,Lee Jin-Ho,Mindt Melanie,Risse Joe Max,Wendisch Volker F.ORCID

Abstract

The N-functionalized amino acid N-methylanthranilate is an important precursor for bioactive compounds such as anticancer acridone alkaloids, the antinociceptive alkaloid O-isopropyl N-methylanthranilate, the flavor compound O-methyl-N-methylanthranilate, and as a building block for peptide-based drugs. Current chemical and biocatalytic synthetic routes to N-alkylated amino acids are often unprofitable and restricted to low yields or high costs through cofactor regeneration systems. Amino acid fermentation processes using the Gram-positive bacterium Corynebacterium glutamicum are operated industrially at the million tons per annum scale. Fermentative processes using C. glutamicum for N-alkylated amino acids based on an imine reductase have been developed, while N-alkylation of the aromatic amino acid anthranilate with S-adenosyl methionine as methyl-donor has not been described for this bacterium. After metabolic engineering for enhanced supply of anthranilate by channeling carbon flux into the shikimate pathway, preventing by-product formation and enhancing sugar uptake, heterologous expression of the gene anmt encoding anthranilate N-methyltransferase from Ruta graveolens resulted in production of N-methylanthranilate (NMA), which accumulated in the culture medium. Increased SAM regeneration by coexpression of the homologous adenosylhomocysteinase gene sahH improved N-methylanthranilate production. In a test bioreactor culture, the metabolically engineered C. glutamicum C1* strain produced NMA to a final titer of 0.5 g·L−1 with a volumetric productivity of 0.01 g·L−1·h−1 and a yield of 4.8 mg·g−1 glucose.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3