Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation

Author:

Conrad Ralf

Abstract

Flooding and desiccation of soil environments mainly affect the availability of water and oxygen. While water is necessary for all life, oxygen is required for aerobic microorganisms. In the absence of O2, anaerobic processes such as CH4 production prevail. There is a substantial theoretical knowledge of the biogeochemistry and microbiology of processes in the absence of O2. Noteworthy are processes involved in the sequential degradation of organic matter coupled with the sequential reduction of electron acceptors, and, finally, the formation of CH4. These processes follow basic thermodynamic and kinetic principles, but also require the presence of microorganisms as catalysts. Meanwhile, there is a lot of empirical data that combines the observation of process function with the structure of microbial communities. While most of these observations confirmed existing theoretical knowledge, some resulted in new information. One important example was the observation that methanogens, which have been believed to be strictly anaerobic, can tolerate O2 to quite some extent and thus survive desiccation of flooded soil environments amazingly well. Another example is the strong indication of the importance of redox-active soil organic carbon compounds, which may affect the rates and pathways of CH4 production. It is noteworthy that drainage and aeration turns flooded soils, not generally, into sinks for atmospheric CH4, probably due to the peculiarities of the resident methanotrophic bacteria.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference112 articles.

1. Microbial ecology of methanogens and methanotrophs;Conrad;Adv. Agron.,2007

2. Biogeochemistry of Methanogenic Bacteria;Oremland,1988

3. Methanogenesis: Ecology, Physiology, Biochemistry and Genetics;Zinder,1993

4. Symbiotic digestion of lignocellulose in termite guts

5. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3