The Photoreceptor Components FaWC1 and FaWC2 of Fusarium asiaticum Cooperatively Regulate Light Responses but Play Independent Roles in Virulence Expression

Author:

Tang Ying,Zhu PinkuanORCID,Lu Zhengyu,Qu Yao,Huang Li,Zheng Ni,Wang Yiwen,Nie Haozhen,Jiang Yina,Xu Ling

Abstract

Fusarium asiaticum belongs to one of the phylogenetical subgroups of the F. graminearum species complex and is epidemically predominant in the East Asia area. The life cycle of F. asiaticum is significantly regulated by light. In this study, the fungal blue light receptor white collar complex (WCC), including FaWC1 and FaWC2, were characterized in F. asiaticum. The knockout mutants ΔFawc1 and ΔFawc2 were generated by replacing the target genes via homologous recombination events. The two mutants showed similar defects in light-induced carotenoid biosynthesis, UV-C resistance, sexual fruiting body development, and the expression of the light-responsive marker genes, while in contrast, all these light responses were characteristics in wild-type (WT) and their complementation strains, indicating that FaWC1 and FaWC2 are involved in the light sensing of F. asiaticum. Unexpectedly, however, the functions of Fawc1 and Fawc2 diverged in regulating virulence, as the ΔFawc1 was avirulent to the tested host plant materials, but ΔFawc2 was equivalent to WT in virulence. Moreover, functional analysis of FaWC1 by partial disruption revealed that its light–oxygen–voltage (LOV) domain was required for light sensing but dispensable for virulence, and its Zinc-finger domain was required for virulence expression but not for light signal transduction. Collectively, these results suggest that the conserved fungal blue light receptor WCC not only endows F. asiaticum with light-sensing ability to achieve adaptation to environment, but it also regulates virulence expression by the individual component FaWC1 in a light-independent manner, and the latter function opens a way for investigating the pathogenicity mechanisms of this important crop disease agent.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Commission

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3