Improving Xylose Fermentation in Saccharomyces cerevisiae by Expressing Nuclear-Localized Hexokinase 2

Author:

Zheng Liyuan,Wei Shan,Wu Meiling,Zhu Xuehao,Bao Xiaoming,Hou Jin,Liu Weifeng,Shen YuORCID

Abstract

Understanding the relationship between xylose and the metabolic regulatory systems is a prerequisite to enhance xylose utilization in recombinant S. cerevisiae strains. Hexokinase 2 (Hxk2p) is an intracellular glucose sensor that localizes to the cytoplasm or the nucleus depending on the carbon source. Hxk2p interacts with Mig1p to regulate gene transcription in the nucleus. Here, we investigated the effect of nucleus-localized Hxk2p and Mig1p on xylose fermentation. The results show that the expression of HXK2S14A, which encodes a constitutively nucleus-localized Hxk2p, increased the xylose consumption rate, the ethanol production rate, and the ethanol yield of the engineered yeast strain by 23.5%, 78.6% and 42.6%, respectively. The deletion of MIG1 decreased xylose utilization and eliminated the positive effect of Hxk2p. We then performed RNA-seq and found that the targets of Hxk2pS14A on xylose were mainly genes that encode RNA-binding proteins. This is very different from the known targets of Mig1p and supports the notion that the Hxk2p-Mig1p interaction is abolished in the presence of xylose. These results will improve our understanding of the interrelation between the Snf1p-Mig1p-Hxk2p glucose signaling pathway and xylose utilization in S. cerevisiae and suggests that the expression of HXK2S14A could be a viable strategy to improve xylose utilization.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3