Persistent Activities of Extracellular Enzymes Adsorbed to Soil Minerals

Author:

Olagoke Folasade K.,Kaiser KlausORCID,Mikutta Robert,Kalbitz Karsten,Vogel CordulaORCID

Abstract

Adsorption of extracellular enzymes to soil minerals is assumed to protect them against degradation, while modifying their activities at the same time. However, the persistence of the activity of adsorbed enzymes remains poorly understood. Therefore, we studied the persistence of cellulase and α-amylase activities after adsorption to soil amended with various amounts (+1, +5, and +10 wt.%) of three typical soil minerals, montmorillonite, kaolinite, and goethite. Soil without mineral addition (pure soil), pure minerals, and pure dissolved enzymes were used as references. Soil mineral–enzyme complexes were prepared and then incubated for 100 days; temporal changes in enzyme activities were analyzed after 0, 0.1, 1, 10, and 100 days. The specific enzyme activities (activities normalized to protein content) and their persistence (activities relative to activities at day 0) were compared to enzyme activities in solution and after sorption to the control soil. Amylase adsorption to pure minerals increased in the following order: montmorillonite > kaolinite > goethite. That of cellulase increased in the following order: goethite > montmorillonite > kaolinite. Adsorption of enzymes to soils did not increase in the same order of magnitude as the addition of reactive binding sites. Based on inverse relationships between the amount of enzyme adsorbed and the specific enzyme activity and their persistency, we showed that a limited availability of sorption sites is important for high specific activity and persistence of the enzymes. This is probably the consequence of less and weaker bonds, as compared to a high availability of sorption sites, resulting in a smaller impact on the active sites of the enzyme. Hence, we suppose that the soil mineral phase supports microorganisms in less-sorptive environments by saving energy on enzyme production, since small enzyme release could already result in sufficient activities to degrade respective target carbon substrates.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3