Multi-Scenario Simulation of Land System Change in the Guangdong–Hong Kong–Macao Greater Bay Area Based on a Cellular Automata–Markov Model

Author:

Yang Chao1,Zhai Han12ORCID,Fu Meijuan2,Zheng Que2,Fan Dasheng2

Affiliation:

1. National Engineering Research Center of GIS, China University of Geosciences, Wuhan 430074, China

2. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China

Abstract

As one of the four major bay areas in the world, the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) is a highly integrated mega urban agglomeration and its unparalleled urbanization has induced prominent land contradictions between humans and nature, which hinders its sustainability and has become the primary concern in this region. In this paper, we probed the historical characteristics of land use and land cover change (LUCC) in the GBA from 2005 to 2015, and forecasted its future land use pattern for 2030, 2050, and 2070, using a cellular automata–Markov (CA–Markov) model, under three typical tailored scenarios, i.e., urban development (UD), cropland protection (CP), and ecology security (ES), for land use optimization. The major findings are as follows: (1) The encroachments of build-up land on the other land uses under rapid urbanization accounted for the leading forces of LUCCs in the past decade. Accordingly, the urban sprawl was up to 1441.73 km2 (23.47%), with cropland, forest land, and water areas reduced by 570.77 km2 (4.38%), 526.05 km2 (1.76%), and 429.89 km2 (10.88%), respectively. (2) Based on the validated CA–Markov model, significant differences are found in future land use patterns under multiple scenarios, with the discrepancy magnified over time and driven by different orientations. (3) Through comprehensive comparisons and tradeoffs, the ES scenario mode seems optimal for the GBA in the next decades, which optimizes the balance between socio-economic development and ecological protection. These results serve as an early warning for future land problems and can be applied to land use management and policy formulation to promote the sustainable development of the GBA.

Funder

Special Foundation for the National Science and Technology Basic Research Program of China

key R&D Program of Hubei Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3