Single-Image Super-Resolution Method for Rotating Synthetic Aperture System Using Masking Mechanism

Author:

Sun Yu1ORCID,Zhi Xiyang1ORCID,Jiang Shikai1,Shi Tianjun1ORCID,Song Jiachun1,Yang Jiawei1,Wang Shengao2,Zhang Wei1

Affiliation:

1. Research Center for Space Optical Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Division of System Engineering, Boston University, Boston, MA 02215, USA

Abstract

The emerging technology of rotating synthetic aperture (RSA) presents a promising solution for the development of lightweight, large-aperture, and high-resolution optical remote sensing systems in geostationary orbit. However, the rectangular shape of the primary mirror and the distinctive imaging mechanism involving the continuous rotation of the mirror lead to a pronounced decline in image resolution along the shorter side of the rectangle compared to the longer side. The resolution also exhibits periodic time-varying characteristics. To address these limitations and enhance image quality, we begin by analyzing the imaging mechanism of the RSA system. Subsequently, we propose a single-image super-resolution method that utilizes a rotated varied-size window attention mechanism instead of full attention, based on the Vision Transformer architecture. We employ a two-stage training methodology for the network, where we pre-train it on images masked with stripe-shaped masks along the shorter side of the rectangular pupil. Following that, we fine-tune the network using unmasked images. Through the strip-wise mask sampling strategy, this two-stage training approach effectively circumvents the interference of lower confidence (clarity) information and outperforms training the network from scratch using the unmasked degraded images. Our digital simulation and semi-physical imaging experiments demonstrate that the proposed method achieves satisfactory performance. This work establishes a valuable reference for future space applications of the RSA system.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3