Author:
Yu Wei,You Hongjian,Lv Peng,Hu Yuxin,Han Bing
Abstract
Geostationary optical remote sensing satellites, such as the GF-4, have a high temporal resolution and wide coverage, which enables the continuous tracking and observation of ship targets over a large range. However, the ship targets in the images are usually small and dim and the images are easily affected by clouds, islands and other factors, which make it difficult to detect the ship targets. This paper proposes a new method for detecting ships moving on the sea surface using GF-4 satellite images. First, the adaptive nonlinear gray stretch (ANGS) method was used to enhance the image and highlight small and dim ship targets. Second, a multi-scale dual-neighbor difference contrast measure (MDDCM) method was designed to enable detection of the position of the candidate ship target. The shape characteristics of each candidate area were analyzed to remove false ship targets. Finally, the joint probability data association (JPDA) method was used for multi-frame data association and tracking. Our results suggest that the proposed method can effectively detect and track moving ship targets in GF-4 satellite optical remote sensing images, with better detection performance than other classical methods.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献