Deep Learning for Integrated Speckle Reduction and Super-Resolution in Multi-Temporal SAR

Author:

Bu Lijing1,Zhang Jiayu1,Zhang Zhengpeng1,Yang Yin23,Deng Mingjun1

Affiliation:

1. School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China

2. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China

3. National Center for Applied Mathematics in Hunan Laboratory, Xiangtan 411105, China

Abstract

In the domain of synthetic aperture radar (SAR) image processing, a prevalent issue persists wherein research predominantly focuses on single-task learning, often neglecting the concurrent impact of speckle noise and low resolution on SAR images. Currently, there are two main processing strategies. The first strategy involves conducting speckle reduction and super-resolution processing step by step. The second strategy involves performing speckle reduction as an auxiliary step, with a focus on enhancing the primary task of super-resolution processing. However, both of these strategies exhibit clear deficiencies. Nevertheless, both tasks jointly focus on two key aspects, enhancing SAR quality and restoring details. The fusion of these tasks can effectively leverage their task correlation, leading to a significant improvement in processing effectiveness. Additionally, multi-temporal SAR images covering imaging information from different time periods exhibit high correlation, providing deep learning models with a more diverse feature expression space, greatly enhancing the model’s ability to address complex issues. Therefore, this study proposes a deep learning network for integrated speckle reduction and super-resolution in multi-temporal SAR (ISSMSAR). The network aims to reduce speckle in multi-temporal SAR while significantly improving the image resolution. Specifically, it consists of two subnetworks, each taking the SAR image at time 1 and the SAR image at time 2 as inputs. Each subnetwork includes a primary feature extraction block (PFE), a high-level feature extraction block (HFE), a multi-temporal feature fusion block (FFB), and an image reconstruction block (REC). Following experiments on diverse data sources, the results demonstrate that ISSMSAR surpasses speckle reduction and super-resolution methods based on a single task in terms of both subjective perception and objective evaluation metrics regarding the quality of image restoration.

Funder

National Key R&D Program of China

the Science and Technology Project of Hunan Provincial Natural Resources Department

the Scientific Research Project of Natural Resources in Hunan Province

Postgraduate Scientific Research Innovation Project of Hunan Province

Postgraduate Scientific Research Innovation Project of Xiang tan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3