Abstract
Carbon-fiber-reinforced plastic (CFRP) has been used in many industries owing to its excellent specific-strength characteristics; however, the control of its mechanical properties is difficult owing to the directivity nature of carbon fiber as well as the composition of layered structures. In addition, the damping coefficient of CFRP varies with spectral loading patterns under random and harmonic excitation owing to the high values of damping characteristics compared with conventional steel materials. A scaled sensitivity index was proposed to compare the magnitude of the frequency response function over two parameters of interest: the direction of the carbon fiber and the spectral loading pattern for CFRP specimens. Three specimens with different directions (0°, 45°, and 90°) were prepared and uniaxial excitation testing was conducted for two different spectral loading cases: random and harmonic. The summation of the frequency response was used to calculate the sensitivity index to eliminate the effects of the location of measurement data, and all sensitivity indexes were calculated using the measured responses. Finally, the sensitivity of each CFRP specimen was discussed for two cases, i.e., the direction of carbon fiber and the spectral loading pattern, using the scaled sensitivity index results.
Funder
National Research Foundation of Korea
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献