Evaluation of the Modal Parameters of a Unidirectional Carbon-Based Composite Structure Using the Influential Factor of Static Loading

Author:

Chung Seunghwan1,Kim Chan-Jung2ORCID

Affiliation:

1. Department of Automobile Engineering, Korea Polytechnic Colleges, Seoul 04392, Republic of Korea

2. School of Mechanical Engineering, Pukyoung National University, Busan 48513, Republic of Korea

Abstract

Static loading can significantly alter the dynamics of unidirectional carbon-based composites (UCBCs), with modal parameters varying depending on the orientation of the carbon fibers. In this study, the sensitivity of modal parameters of UCBC structures under uniaxial static loading was investigated. The theoretical static load influential factor was derived from a linearized UCBC model and corresponded to the transformed decoupled response over the mass-normalized static load. Three rectangular UCBC specimens (carbon fiber orientation of 0°, 45°, and 90°) were prepared under fixed–fixed boundary conditions using a jig fixture. Uniaxial static loads between 0 N and 1000 N were applied, and the first three modes of the UCBC specimens were analyzed. An isotropic SUS304 specimen was used as a reference. The linearization assumption about the UCBC structure was preliminarily validated with the Modal Assurance Criterion (MAC). A high influential factor was found for the UCBC specimen when carbon fibers were aligned with the static load direction at the first two resonance frequencies. Therefore, the proposed influential factor is an efficient indicator for determining the sensitivity of the dynamic response of a UCBC structure over a static load case. The variations in the influential factors for the UCBC specimens were more pronounced than for the isotropic specimens.

Funder

Ministry of SMEs and Startups

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3