Error Analysis and Optimization of Structural Parameters of Spatial Coordinate Testing System Based on Position-Sensitive Detector

Author:

Lu Haozhan1,Chu Wenbo2,Zhang Bin1,Zhao Donge1

Affiliation:

1. College of Information and Communication Engineering, North University of China, Taiyuan 030000, China

2. College of Mechatronic Engineering, North University of China, Taiyuan 030000, China

Abstract

For the research on real-time accurate testing technology for the explosion point spatial coordinate of munitions, its currently commonly used methods such as acoustic–electric detection or high-speed imaging are limited by the field conditions, response rate, cost, and other factors. In this paper, a method of spatial coordinate testing for the explosion point based on a 2D PSD (position-sensitive detector) intersection is proposed, which has the advantages of a faster response, better real-time performance, and a lower cost. Firstly, a mathematical model of the spatial coordinate testing system was constructed, and an error propagation model for structural parameters was developed. The influence of the position of the optical axes’ intersection as well as the azimuth angle and pitch angle on the test accuracy of the system was simulated and analyzed, thus obtaining the distribution and variation trend of the overall error propagation coefficient of the system. Finally, experiments were designed to obtain the test error of the system for validation. The results show that the system test accuracy is high when the azimuth angle is 20°–50°, the overall error propagation coefficient does not exceed 48.80, and the average test error is 56.17 mm. When the pitch angle is −2.5°–2.5°, the system has a higher test accuracy, with the overall error propagation coefficient not exceeding 44.82, and the average test error is 41.87 mm. The test accuracy of the system is higher when the position of the optical axes’ intersection is chosen to make sure that explosion points fall in the region of the negative half-axis of the Zw-axis of the world coordinate system, with an overall error propagation coefficient of less than 44.78 and an average test error of 73.38 mm. It is shown that a reasonable selection of system structure parameters can significantly improve the system test accuracy and optimize the system deployment mode under the long-distance field conditions so as to improve the deployment efficiency.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3