Detection of Bacterial Metabolic Volatile Indole Using a Graphene-Based Field-Effect Transistor Biosensor

Author:

Lin Zihong,Wu GuangfuORCID,Zhao Ling,Lai King Wai ChiuORCID

Abstract

The existence of bacteria is a great threat to food safety. Volatile compounds secreted by bacteria during their metabolic process can be dissected to evaluate bacterial contamination. Indole, as a major volatile molecule released by Escherichia coli (E. coli), was chosen to examine the presence of E. coli in this research. In this work, a graphene field-effect transistor (G-FET) was employed to detect the volatile molecule-indole based on a π-π stacking interaction between the indole and the graphene. The exposure of G-FET devices to the indole provokes a change in electrical signal, which is ascribed to the adsorption of the indole molecule onto the graphene surface via π-π stacking. The adsorption of the indole causes a charge rearrangement of the graphene-indole complex, which leads to changes in the electrical signal of G-FET biosensors with a different indole concentration. Currently, the indole biosensor can detect indole from 10 ppb to 250 ppb and reach a limit of detection of 10 ppb for indole solution detection. We believe that our detection strategy for detecting bacterial metabolic gas molecules will pave a way to developing an effective platform for bacteria detection in food safety monitoring.

Funder

City University research grant

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference41 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3