Designing a Graphene Metasurface Organic Material Sensor for Detection of Organic Compounds in Wastewater

Author:

Aliqab Khaled1ORCID,Wekalao Jacob2,Alsharari Meshari1ORCID,Armghan Ammar1ORCID,Agravat Dhruvik2,Patel Shobhit K.3ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

2. Department of Physics, Marwadi University, Rajkot 360003, India

3. Department of Computer Engineering, Marwadi University, Rajkot 360003, India

Abstract

In many fields, such as environmental monitoring, food safety, and medical diagnostics, the identification of organic compounds is essential. It is crucial to create exceptionally sensitive and selective sensors for the detection of organic compounds in order to safeguard the environment and human health. Due to its outstanding electrical, mechanical, and chemical characteristics, the two-dimensional carbon substance graphene has recently attracted much attention for use in sensing applications. The purpose of this research is to create an organic material sensor made from graphene for the detection of organic substances like phenol, ethanol, methanol, chloroform, etc. Due to its high surface-to-volume ratio and potent interactions with organic molecules, graphene improves the sensor’s performance while the metasurface structure enables the design of highly sensitive and selective sensing elements. The suggested sensor is highly sensitive and accurate at detecting a broad spectrum of organic molecules, making it appropriate for a number of applications. The creation of this sensor has the potential to have a substantial impact on the field of organic sensing and increase the safety of food, medicine, and the environment. The graphene metasurface organic material sensor (GMOMS) was categorized into three types denoted as GMOMS1, GMOMS2, and GMOMS3 based on the specific application of the graphene chemical potential (GCP). In GMOMS1, GCP was applied on both the CSRR and CS surfaces. In GMOMS2, GCP was applied to the CS surface and the surrounding outer region of the CSRR. In GMOMS3, GCP was applied to the CSRR and the surrounding outer region of the CSRR surface. The results show that all three designs exhibit high relative sensitivity, with the maximum values ranging from 227 GHz/RIU achieved by GMOMS1 to 4318 GHz/RIU achieved by GMOMS3. The FOM values achieved for all the designs range from 2.038 RIU−1 achieved by GMOMS2 to 31.52 RIU−1 achieved by GMOMS3, which is considered ideal in this paper.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3