Description and Genomic Characterization of Oceaniferula flavus sp. nov., a Novel Potential Polysaccharide-Degrading Candidate of the Difficult-to-Cultivate Phylum Verrucomicrobiota Isolated from Seaweed

Author:

Ye Meng-Qi,Jin Chuan-Bo,Liu Xin-Jiang,Tan Xin-Yun,Ye Yu-Qi,Du Zong-JunORCID

Abstract

A novel strain, isolate 5K15T, which belongs to difficult-to-cultivate phylum Verrucomicrobiota, was recovered from kelp collected from Li Island, Rongcheng, China. The genome sequence of the strain (genome size 3.95 Mbp) showed the presence of four putative biosynthetic gene clusters (BGCs), namely, two terpene biosynthetic gene clusters, one aryl polyene biosynthetic cluster, and one type III PKS cluster. Genomic analysis revealed 79 sulfatase-encoded genes, 24 sulfatase-like hydrolase/transferase-encoded genes, and 25 arylsulfatase-encoded genes, which indicated the great potential of 5K15T to degrade sulfated polysaccharides. Comparative analysis of 16S rRNA gene sequence showed that the novel strain was most closely related to Oceaniferula marina N1E253T (96.4%). On the basis of evidence from a polyphasic study, it is proposed that the strain 5K15T (= KCTC 82748T = MCCC 1H00442T = SDUM 810003T) be classified as Oceaniferula flavus sp. nov. The strain has the ability of carbohydrate transport and metabolism. This ability allows it to survive in carbohydrate-rich materials such as kelp. It has the potential to be used in the marine drug industry using seaweed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Guangdong Basic and Applied Basic Research Foundation

National Science and Technology Fundamental Resources Investigation Program of China

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3