Dynamic Bandwidth Part Allocation in 5G Ultra Reliable Low Latency Communication for Unmanned Aerial Vehicles with High Data Rate Traffic

Author:

Han MinsigORCID,Lee JaewonORCID,Rim MinjoongORCID,Kang Chung G.ORCID

Abstract

The 3GPP standardized the physical layer specification in 5G New Radio to support enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC) coexistence in usage scenarios including aerial vehicles (AVs). Dynamic multiplexing of URLLC traffic was standardized to increase the outage capacity. DM allocates a fully overlapped bandwidth part (BWP) of eMBB and URLLC AVs to perform the immediate scheduling of URLLC traffic by puncturing ongoing eMBB traffic. However, DM often suffers from a significant frame error incurred by puncturing. Meanwhile, BWP can be sliced orthogonally for eMBB and URLLC AVs, possibly preventing overdimensioning the resources depending on the eMBB and URLLC traffic loads. In this paper, we propose a dynamic BWP allocation scheme that switches between two multiplexing methods, dynamic multiplexing (DM) and orthogonal slicing (OS), so as to minimize an impact of uRLLC traffic on eMBB traffic. To implement efficient BWP allocation, the capacity region is analyzed by considering the effect of physical layer parameters, such as modulation and coding scheme (MCS) levels and code block group size on DM and OS. OS is effective for improving the eMBB throughput under a URLLC latency constraint for deterministic and predictable URLLC traffic, whereas DM has limited error-correcting capability against the URLLC’s puncturing effect. The relative MCS level of eMBB and URLLC is critical in determining the eMBB traffic tolerance against puncturing. Identifying the performance tradeoff between DM and OS, the tolerance level is quantified by a URLLC load threshold. It is given in an approximate closed form, which is an essential reference for selecting DM over OS, enabling dynamic BWP allocation for the URLLC AV.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3