Mixed Micro/Macro Cache for Device-to-Device Caching Systems in Multi-Operator Environments

Author:

Rim Minjoong1ORCID

Affiliation:

1. Department of Information and Communication Engineering, Dongguk University, Seoul 04620, Republic of Korea

Abstract

In a device-to-device (D2D) caching system that utilizes a device’s available storage space as a content cache, a device called a helper can provide content requested by neighboring devices, thereby reducing the burden on the wireless network. To enhance the efficiency of a limited-size cache, one can consider not only macro caching, which is content-based caching based on content popularity, but also micro caching, which is chunk-based sequential prefetching and stores content chunks slightly behind the one that a nearby device is currently viewing. If the content in a cache can be updated intermittently even during peak hours, the helper can improve the hit ratio by performing micro caching, which stores chunks that are expected to be requested by nearby devices in the near future. In this paper, we discuss the performance and effectiveness of micro D2D caching when there are multiple operators, the helpers can communicate with the devices of other operators, and the operators are under a low load independently of each other. We also discuss the ratio of micro caching in the cache area when the cache space is divided into macro and micro cache areas. Good performance can be achieved by using micro D2D caching in conjunction with macro D2D caching when macro caching alone does not provide sufficient performance, when users are likely to continue viewing the content they are currently viewing, when the content update cycle for the cache is short and a sufficient number of chunks can be updated for micro caching, and when there are multiple operators in the region.

Funder

Ministry of Science and ICT (MSIT) Korea Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3