Influence of Geometric Properties of Capacitive Sensors on Slope Error and Nonlinearity of Displacement Measurements

Author:

Daul LarsORCID,Jin Tao,Busch Ingo,Koenders LudgerORCID

Abstract

Capacitive sensors are widely used in industrial applications, such as CNC machine tools, where reliable positioning in the micrometer range with nanometer accuracy is required. Hence, these sensors are operated in harsh industrial environments. The accuracy of these sensors is mainly limited by slope errors and nonlinearities. In practice, the required accuracy of these sensors is achieved by a calibration against a metrological high-quality reference such as interferometric displacement measurement systems. This usually involves the use of high-order polynomials as calibration functions based on empirical data. In metrology, this is only the second-best approach and has disadvantages in terms of stability over the measurement range of the instrument. In addition, the validity of these empirical calibrations over time is questionable, and the associated uncertainty can only be roughly estimated. This makes regular recalibration of such sensors at short intervals mandatory to ensure the reliability of the displacement measurement. In this paper, we report on our investigations of the different parameters that affect the accuracy of capacitive sensors. Since the capacitance of these sensors results from the electric fields that build up between the electrodes, these field lines are calculated using FEM simulation models for typical commercial sensors. In the following the influence of various geometric parameters such as edge radius, guard ring size and shape, or thickness of the electrodes are individually analyzed according to their impact on the accuracy of these sensors. Based on these simulations, the deviations of the capacitance as they arise for real detector geometries can then be compared with idealized, de facto unrealizable parallel plate capacitors. This methodology allows overall uncertainty of capacitive sensors to be decomposed into their individual components and sorted in terms of their contribution to the uncertainty budget. The individual FEM-based analysis then enables a systematic analysis of the sources of uncertainty and, thus, reveals possibilities to improve manufacturing processes for capacitive sensors, to put these sensors on a solid metrological basis, and to improve the performance of these displacement measurement systems in the long run, i.e., to provide better sensors for the application.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. Mise en Pratique for the Definition of the Metre in the SI: SI Brochure—9th Edition (2019)—Appendix 2https://www.bipm.org/en/publications/mises-en-pratique

2. The measurement and control of small displacements

3. Capacitive Measurements of High Sensitivity and their Applications to Industrial Testing and Control

4. The Nanopositioning Book;Hicks,1997

5. The Calibration of Displacement Sensors

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3